3.636 \(\int \frac{(a+b \sec (c+d x))^{3/2}}{\sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=209 \[ \frac{2 a b \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}}+\frac{2 b^2 \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}}+\frac{2 a \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

[Out]

(2*a*b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a
+ b*Sec[c + d*x]]) + (2*b^2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)]*Sqrt[
Sec[c + d*x]])/(d*Sqrt[a + b*Sec[c + d*x]]) + (2*a*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*
x]])/(d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.498619, antiderivative size = 209, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 11, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.44, Rules used = {3868, 3856, 2655, 2653, 3854, 3858, 2663, 2661, 3859, 2807, 2805} \[ \frac{2 b^2 \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}}+\frac{2 a b \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}}+\frac{2 a \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^(3/2)/Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a
+ b*Sec[c + d*x]]) + (2*b^2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)]*Sqrt[
Sec[c + d*x]])/(d*Sqrt[a + b*Sec[c + d*x]]) + (2*a*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*
x]])/(d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]])

Rule 3868

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[a, Int
[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] + Dist[b/d, Int[Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3854

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[a, Int[S
qrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{(a+b \sec (c+d x))^{3/2}}{\sqrt{\sec (c+d x)}} \, dx &=a \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx+b \int \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \, dx\\ &=(a b) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx+b^2 \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx+\frac{\left (a \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{\sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ &=\frac{\left (a b \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{\sqrt{a+b \sec (c+d x)}}+\frac{\left (b^2 \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt{b+a \cos (c+d x)}} \, dx}{\sqrt{a+b \sec (c+d x)}}+\frac{\left (a \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{\sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}\\ &=\frac{2 a E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{d \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}+\frac{\left (a b \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{\sqrt{a+b \sec (c+d x)}}+\frac{\left (b^2 \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{\sqrt{a+b \sec (c+d x)}}\\ &=\frac{2 a b \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{d \sqrt{a+b \sec (c+d x)}}+\frac{2 b^2 \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{d \sqrt{a+b \sec (c+d x)}}+\frac{2 a E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{d \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 2.46034, size = 129, normalized size = 0.62 \[ \frac{2 \sqrt{\frac{a \cos (c+d x)+b}{a+b}} (a+b \sec (c+d x))^{3/2} \left (b \left (a \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )+b \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )\right )+a (a+b) E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )\right )}{d \sec ^{\frac{3}{2}}(c+d x) (a \cos (c+d x)+b)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^(3/2)/Sqrt[Sec[c + d*x]],x]

[Out]

(2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*(a*(a + b)*EllipticE[(c + d*x)/2, (2*a)/(a + b)] + b*(a*EllipticF[(c + d
*x)/2, (2*a)/(a + b)] + b*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)]))*(a + b*Sec[c + d*x])^(3/2))/(d*(b + a*Co
s[c + d*x])^2*Sec[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.302, size = 1367, normalized size = 6.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x)

[Out]

-2/d/((a-b)/(a+b))^(1/2)*(-cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a
+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2+2*cos(d*x+c)*si
n(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b-cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b)
)^(1/2))*b^2+cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*El
lipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2-cos(d*x+c)*sin(d*x+c)*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2
)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b+2*cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*(1/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b)
)^(1/2))*b^2-EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+2*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b)
)^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1)
)^(1/2)*sin(d*x+c)-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(
d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^2*sin(d*x+c)+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))
^(1/2))*a^2*sin(d*x+c)-EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+2*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(
a-b),I/((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)+((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*a^2-a^2*((a-b)/(a+b))^(1/2)*cos(d*
x+c)+((a-b)/(a+b))^(1/2)*cos(d*x+c)*a*b-a*b*((a-b)/(a+b))^(1/2))*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/(1/cos(d*
x+c))^(1/2)/(b+a*cos(d*x+c))/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(3/2)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\sqrt{\sec \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b*sec(d*x + c) + a)^(3/2)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**(3/2)/sec(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(3/2)/sqrt(sec(d*x + c)), x)